您好,欢迎您来 天津洪云特科技发展有限公司!   请登录| 立即注册| 会员中心| 收藏本公司

技术分析

  • Type-C的激光焊接应用

    Type-C是USB接口的一种连接介面,不分正反两面均可插入,大小约为8.3mm×2.5mm,和其他介面一样支持USB标准的充电、数据传输、显示输出等功能。Type-CUSBImplementers Forum制定,在2014年获得苹果、谷歌、英特尔、微软等厂商支持后开始普及。 2015年CES大展上,Intel联合USB实施者论坛向公众展示了USB 3.1的威力,具体搭配的接口是USB Type C,能够正反随便插,大小也与micro-USB相差无几。理论上,USB 3.0 Type C的传输速度能够达到10Gbps。 USB Type-C具有更高效的数据传输能力,更加丰富的可扩展性,更强的供电能力更纤薄的外形,正反面皆可插入。各大主流厂商的大力支持更赋予了Type-C的美好未来。激光熔接焊是最经典的激光应用,在连接器行业中主要用于金属结构件固定,结构加强,地线连接等。在Type-C的加工中激光熔接焊应用于Type-C固定片与外壳的焊接,采用点焊的方式,4-8个点,用于加强接口的抗拉强度。 激光熔接焊可有效修补沙眼、裂痕、崩角及磨损的模边、密封边等微小部位。激光焊点直径小、受热范围小,焊后不会出现气孔、塌陷、热应变及金 相组织变化等现象,极大减小焊后处理工序。采用激光熔接焊系统焊接Type-C有以下优势:能量实时控制,多种焊接波形设定,可精确控制聚焦光斑大小及定位,易实现自动化并带来精密,稳定的焊接品质。无需任何辅助焊接材料,焊缝质量高,无气孔,焊缝强度和韧性相当于甚至超过母材。具有高的深宽比,焊缝小,热影响小,材料变形小。焊缝平整,美观,且焊接后无需处理或只需简单处理。可实现多路光纤输出,全方位焊接。

    2016-05-17

  • 超声焊接

    超声波焊接超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声焊接需要包含超声波发生器、转换器、升压器、焊具等部件。图片来源:engarena过程图片来源:science.howstuffworks1)焊头对塑料表面施压2)焊头每秒20000到40000次振动3)振动产生摩擦热使材料融化粘接类型熔接法、柳焊法、埋植、点焊埋植埋植指的是焊头在压力下将金属零件挤入塑料孔内柳焊柳焊法指的是振动的焊头压制物品的突起处使其热熔为铆钉状,从而使两物体机械铆合点焊点焊指的是对于焊线不易设计的物体进行分点焊接,同样可达到熔接效果。成型图片来源:forwardtech熔接口设计超声焊接一般都要求熔接口要小,接触面要统一。接口设计取决于焊接的材料,焊件的形状以及焊件要求等因素。通常连接的三角形状部分会聚集超声能量,并快速融化形成焊接面。由左向右(对接接头、阶梯型、榫槽型)剪切型:适用与需要密封或者塑料在很窄的温度区间内快速从固态变成熔融状态的场合。图片来源:forwardtech影响焊接性能因素树脂结晶和非结晶状态脱模剂含水率润滑油颜料塑化剂树脂等级填料适用材料超声焊接是一种快速、坚固、干净和可靠的塑料和金属连接工艺。用于热塑性胶片和板的链接,大多数金属都可以进行超声焊接。适用的塑料PS、ABS、Acrylic、ABS、SAN、PMMA、PC-ABS Blends、 Polycarbonate/PC、PC-ABS Blends、PPS、Polysulfone/PSO、PVC、ASA、PPO、PC-PBT Blends、Polyester、Ryton、PET、Polyamide Co-polymer (Nylon 6-3-T)、Valox Polyamide/Nylon 6、Polyamide/Nylon 6/6、PBT、PP、PE、Polyacetal、Ultem(PEI)典型应用塑料:自动化、仪表、医药、纺织和玩具业。金属:薄板的点焊或者线焊、微型电路等。超声焊接的一般特征连接尺寸 受限最大厚度(mm)聚合物:0.1~3金属 0.01~10不同材料可以连接处理温度范围(℃))聚合物 100~250金属 300~600

    2016-05-12

  • 金属粉末注射成型技术

    金属粉末注射成型技术(简称MIM)是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术 金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品、材质不均匀、机械性能低、不易成型薄壁、复杂结构的缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。工艺流程粘结剂→混炼→注射成形→脱脂→烧结→后处理粉末金属粉末 MIM工艺所用金属粉末颗粒尺寸一般在0.5~20μm;从理论上讲,颗粒越细,比表面积也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗的粉末。有机胶粘剂 有机胶粘剂作用是粘接金属粉末颗粒,使混合料在注射机料筒中加热具有流变性和润滑性,也就是说带动粉末流动的载体。因此,粘接剂的选择是整个粉末的载体。因此,粘拉选择是整个粉末注射成型的关键。对有机粘接剂要求:1.用量少,用较少的粘接剂能使混合料产生较好的流变性;2.不反应,在去除粘接剂的过程中与金属粉末不起任何化学反应; 3.易去除,在制品内不残留碳。 混料把金属粉末与有机粘接剂均匀掺混在一起,使各种原料成为注射成型用混合料。混合料的均匀程度直接影响其流动性,因而影响注射成型工艺参数,以至最终材料的密度及其它性能。注射成形本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。在注射成型过程中,混合料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下主入模具中,成型出毛坯。注射成型的毛坯的微观上应均匀一致,从而使制品在烧结过程中均匀收缩。萃取 成型毛坯在烧结前必须去除毛坯内所含有的有机粘接剂,该过程称为萃取。萃取工艺必须保证粘接剂从毛坯的不同部位沿着颗料之间的微小通道逐渐地排出,而不降低毛坯的强度。粘结剂的排除速率一般遵循扩散方程。烧结烧结能使多孔的脱脂毛坯收缩至密化成为具有一定组织和性能的制品。尽管制品的性能与烧结前的许多工艺因素有关,但在许多情况下,烧结工艺对最终制品的金相组织和性能有着很大、甚至决定性的影响。后处理对于尺寸要求较为精密的零件,需要进行必要的后处理。这工序与常规金属制品的热处理工序相同。 “MIM工艺的特点MIM工艺与其它加工工艺的对比MIM使用的原料粉末粒径在2-15μm,而传统粉末冶金的原粉粉末粒径大多在50-100μm。MIM工艺的成品密度高,原因是使用微细粉末。MIM工艺具有传统粉末冶金工艺的优点,而形状上自由度高是传统粉末冶金所不能达到的。传统粉末冶金限于模具的强度和填充密度,形状大多为二维圆柱型。传统的精密铸造脱燥工艺为一种制作复杂形状产品极有效的技术,近年使用陶心辅助可以完成狭缝、深孔穴的成品,但是碍于陶心的强度,以及铸液的流动性的限制,该工艺仍有某些技术上的困难。一般而言,此工艺制造大、中型零件较为合适,小型而复杂形状的零件则以MIM工艺较为合适。比较项目制造工艺MIM工艺传统粉末冶金工艺粉末粒径(μm)2-1550-100相对密度(%)95-9880-85产品重量(g)小于或等于400克10-数百产品形状三维复杂形状二维简单形状机械性能优劣 MIM制程和传统粉末冶金法的比较压铸工艺用在铝和锌合金等熔点低、铸液流动性良好的材料。此工艺的产品因材料的限制,其强度、耐磨性、耐蚀性均有限度。MIM工艺可以加工的原材料较多。 精密铸造工艺,虽然在近年来其产品的精度和复杂度均提高,但仍比不上脱蜡工艺和MIM工艺,粉末锻造是一项重要的发展,已适用于连杆的量产制造。但是一般而言,锻造的工程中热处理的成本和模具的寿命还是有问题,仍待进一步解决。传统机械加工法、近来靠自动化而提升其加工能力,在效果和精度上有极大的进步,但是基本的程序上仍脱不开逐步加工(车削、刨、铣、磨、钻孔、抛光等)来完成零件形状的方式。机械加工方法的加工精度远优于其他加工方法,但是因为材料的有效利用率低,且其形状的完成受限于设备与刀具、有些零件无法用机械加工完成。相反,MIM可以有效利用材料,不受限制,对于小型、高难度形状的精密零件的制造,MIM工艺比较机械加工而言,其成本较低且效率高,具有很强的竞争力。 MIM技术并非与传统加工方法竞争,而是弥补传统加工方法在技术上的不足或无法制作的缺陷。MIM技术可以在传统加工方法制作的零件领域上发挥其特长。MIM工艺在零部件制造方面所具有的技术优势可成型高度复杂结构的结构零件 注射成型工艺技术利用注射机注射成型产品毛坯,保证物料充分充满模具型腔,也就保证了零件高复杂结构的实现。以往在传统加工技术中先作成个别元件再组合成组件的方式,在使用MIM技术时可以考虑整合成完整的单一零件,大大减少步骤、简化加工程序。MIM和其他金属加工法的比较制品尺寸精度高,不必进行二次加工或只需少量精加工 注射成型工艺可直接成型薄壁、复杂结构件,制品形状已接近最终产品要求,零件尺寸公差一般保持在±0.1-±0.3左右。特别对于降低难于进行机械加工的硬质合金的加工成本,减少贵重金属所加工损失尤其具有重要意义。制品微观组织均匀、密度高、性能好 在压制过程中由于模壁与粉末以及粉末与粉末之间的摩擦力,使得压制压力分布非常不均匀,也就导致了压制毛坯在微观组织上的不均匀,这样就会造成压制粉末冶金件在烧结过程中收缩不均匀,因此不得不降低烧结温度以减少这种效应,从而使制品孔隙度大、材料致密性差、密度低,严重影响制品的机械性能。反之注射成型工艺是一种流体成型工艺,粘接剂的存在保障了粉末的均匀排布从而可消除毛坯微观组织上的不均匀,进而使烧结制品密度可达到其材料的理论密度。一般情况下压制产品的密度最高只能达到理论密度的85%。制品高的致密性可使强度增加、韧性加强,延展性、导电导热性得到改善、磁性能提高。效率高,易于实现大批量和规模化生产MIM技术使用的金属模具,其寿命和工程塑料注射成型具模具相当。由于使用金属模具,MIM适合于零件的大量生产。由于利用注射机成型产品毛坯,极大地提高了生产效率,降低了生产成本,而且注射成型产品的一致性、重复性好,从而为大批量和规模化工业生产提供了保证。适用材料范围宽,应用领域广阔(铁基,低合金,高速钢,不锈钢,克阀合金,硬质合金)可用于注射成型的材料非常广泛,原则上任何可高温浇结的粉末材料均可由MIM工艺造成零件,包括了传统制造工艺中的难加工材料和高熔点材料。此外,MIM也可以根据用户的要求进行材料配方研究,制造任意组合的合金材料,将复合材料成型为零件。注射成型制品的应用领域已遍及国民经济各领域,具有广阔的市场前景。注射成型制品的性能MIM工艺采用微米级细粉末,既能加速烧结收缩,有助于提高材料的力学性能,延长材料的疲劳寿命,又能改善耐、抗应力腐蚀及磁性能。

    2016-05-11

  • 激光回流焊接技术

    完善的点焊膏系统,它可以根据不同产品的加热需求,使用各种各样的技术方法来完成焊点的焊接。和其他加热方法类似,误用激光能量很容易烧坏零件。激光加热器充分利用激光能量的传输和吸收的特点,根据焊膏的回流特性创建出一个回流的环境,这能够使得非常困难的焊接任务可以以极高的直通率完成。用样品来做回流试验已经是一个成熟的方法来确定激光回流是否适合于该产品,以及为了完成预期的焊点质量所必须加以控制的工艺参数。理论分析研究激光如何工作是一回事,但实际应用却又是另一回事。如果在一个产品 上,焊膏的回流用激光来完成被确定为一个可行的方法, 那么就可以与焊膏及激光设备系统供应商合作,产品的材料和设备的最佳组合。二氧化碳激光器是目前可用的最强的连续波激光器。二氧化碳激光器可以产生波长约10,600nm的红外光和20%的功率。CO2激光器多用于金属切割和焊接。二氧化碳激光器是由钇铝石榴石掺杂钕金属制成的,通常称之为Nd:YAG激光器。Nd:YAG激光器能产生高能量,在红外光谱图中波长为1,064nm。和CO2激光器类似,它们主要被应用在切割和焊接金属,另外还用于在金属和其他材料上打标。高功率二极管激光器(HDL)主要是依靠GaAs半导体条。能提供范围790~980nm的波长和每条50瓦的输出功率。在过去几年里,以保持二极管温度为目标的二极管冷却技术的进步,显著地增加了二极管的功率、寿命和效率。一些用户选择用激光加热,是因为在众多手段中它是最佳选项;而另外一些用户则发现,由于可行的加热手段非常受限,激光将是解决他们所面对的加热难题时的方案。使用激光加热最直接的原因是希望进行非接触的局部加热。虽然动机各不相同,但目的是一样的:回流的仅限于某个位置而不会波及其它区域,并要在极短的时间内完成,从而有效地避免产品的其它部位被传导更多的热量。电缆线放置之前焊膏被点在所有的焊盘上。激光加热是紧随点焊膏工艺之后,在一条线上完成的,而所加的热量刚好形成焊点。焊料处于熔融态的时间不超过3秒钟。在加热时传导到玻璃基板表面的热量是很少的,可以防止热膨胀爆裂。而焊点的外观则满足一致性要求。同之前的工艺一样,在每个引脚部位分别点焊膏,再单独用激光加热每个引脚,由于导热的原因,第一个引脚要比第四个引脚的加热时间长一些。局部的加热温度是足够的,而总热量对于塑料件是安全的

    2016-12-28

  • 扫描关注微信

  • 业务咨询
    8:30~17:00(法定节假日除外)

    售后服务
    8:30~17:00(法定节假日除外)

  • 业务员
    15302051808

    业务咨询
    022-28236635